Identificación De Redes De Caminos Utilizando Imágenes Digitales Multi-Espectrales Y Pancromáticas. El Caso De Los Ramales Del Camino Real De Tierra Adentro En San Juan Del Río
DOI:
https://doi.org/10.37646/xihmai.v9i18.243Abstract
Resumen
Los métodos de clasificación para la identificación de caminos usando imágenes de satélite de alta resolución se basan en las características espectrales de estas; sin embargo, en la actualidad, el procesamiento digital permite integrar las características espectrales con las características espaciales al fusionar imágenes pancromáticas de alta resolución con imágenes multiespectrales de resolución media. Este procesamiento toma el nombre de Pansharpening. Posteriormente, la imagen producto de la fusión es procesada utilizando algoritmos de clasificación para discriminar los caminos o trazos lineales de otros objetos como pueden ser ciudades, parcelas, cuerpos de agua, etc. Los caminos clasificados pueden ser subsecuentemente re-clasificados utilizando la información de los bordes para eliminar objetos que no corresponden a caminos.
Palabras clave: Mapas, redes de caminos, imágenes digitales multiespectrales, pancromáticas
Abstract
Classification methods for road extraction are based in the spectral characteristics of the images. However, actually, the digital processing allows the integration of the spectral characteristics with the spatial features when combining high resolution panchromatic images with medium resolution multispectral images. This processing is known as Pansharpening. The resulting image is classified to discriminate between roads and other objects, like cities, water bodies and crops, between others. The identified roads are then segmented and re-classified using the edge information to eliminate the features that do not correspond to roads.
Keywords: Maps, Road network, Multispectral and Panchromatic Digital Images
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2014 Fernando López Aguilar, Pedro López García
This work is licensed under a Creative Commons Attribution 4.0 International License.
Authors who publish in this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication, with the work licensed under a Creative Commons Attribution 4.0 License, which allows others to use the published work as long as they acknowledge the authorship of the work and its first publication in this journal.
Authors may make separate, additional contractual arrangements for non-exclusive distribution of the published version of the article in this journal (e.g., posting it to an institutional repository or publishing it in a book) as long as they clearly indicate that the work was first published in this journal.
Authors are permitted and encouraged to share their work online (for example, via institutional repositories or personal websites) prior to and during the manuscript submission process, as it can lead to productive exchanges and to increased and more rapid citation of the published work.